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A B S T R A C T   

270 nm AlGaN UV Light-Emitting Diodes (LEDs) were exposed to 1–5 Mrad fluences of Co-60 γ-rays. The effect of 
the exposure to radiation was a ~40% reduction in optical output after the highest fluence. No significant 
midgap emission was induced in the electro-luminescence spectra of the irradiated LEDs. We ascribe the decrease 
in optical output to creation of non-radiative states within the active regions. There were small (5–10%) in-
creases in forward and reverse current as a result of irradiation with an effective carrier removal rate of <1 cm− 1. 
The irradiation did not produce any increase in degradation rate of the LEDs output power under high drive 
current (95 mA) compared to unirradiated devices, which is consistent with the lack of midgap emission. The 
relatively small changes in electrical and optical properties, along with the resistance of the AlxGa1-xN/AlN to 
displacement damage effects indicate these devices may be well-suited to harsh terrestrial and space radiation 
applications.   

1. Introduction 

Deep-UV Light-Emitting Diodes (LEDs) are a promising technology 
with a wide range of potential applications, including sterilization, 
water purification, and medical diagnostics [1–5]. These LEDs emit light 
in the deep-UV wavelength range (230–300 nm), which is strongly 
absorbed by DNA and RNA, making them effective at inactivating a 
variety of microorganisms [3–5]. The external quantum efficiency (EQE) 
of AlxGa1-xN-based deep-UV LEDs is typically <0.5%, but this can be 
improved by optimizing the device structure and fabrication process [6]. 
Recent advances in deep-UV LED technology have enabled the impres-
sive development of devices with EQEs exceeding 10% [6–15], which is 
sufficient for many applications [6]. 

These LEDs have several advantages over conventional UV sources, 
such as mercury lamps and excimer lasers [1–15]. They are more 
compact, have a longer lifetime, and can be modulated at much higher 
frequencies. These LEDs are also expected to have applications in the 
Laser Interferometer Space Antenna (LISA), the first gravitational wave 
detector in space, for discharge capability on free-flying test masses to 
minimize the effect of electrostatic forces caused by cosmic rays and 

solar particles [16–20]. 
However, there is still much to understand in terms of the response of 

these materials to various radiation environments, including total 
ionizing dose conditions where ionization energy deposition dominates 
and single event upsets during heavy ion strikes [18,21–28]. Sun et al. 
[18] reported experiments in which UV LEDs were irradiated with ~63 
MeV protons to fluences of 2 × 1012 protons/cm2, equivalent to ~100 
years of radiation dose in the LISA orbit. The light output from the LEDs 
did not show significant changes. The strong atomic bonding and high 
defect recombination rates at room temperature are reasons why these 
materials also display strong resistance to radiation damage displace-
ment effects and highlights their potential for operation in harsh space 
or terrestrial environments [28]. However, the response to other sources 
of radiation, including gamma rays, neutrons, and electrons must be 
established. Radiation damage in photonic devices can cause several 
problems, including a decrease in the emission intensity, increase in the 
leakage current and a decrease in the breakdown voltage and creation of 
defects in the device, such as vacancies and interstitials, which can trap 
carriers and lead to non-radiative recombination. Wang et al. [21] re-
ported that γ -ray irradiation accelerated degradation caused by 
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electrical stress in AlGaN-based UVC LEDs. Typically, UV LED aging rate 
is inversely proportional to the third power of drive current density 
[30–36], and part of the degradation in optical output is due to 
Auger-Meitner recombination, in which electrons and holes recombine 
across the semiconductor band gap [37]. This leads to a transfer of en-
ergy via the Coulomb interaction to another electron or hole, which is 

excited to a higher energy state. 
The presence of resistive layers within the UVC LED raises the 

question of the possible susceptibility of such devices to ionizing radi-
ation, which can be conveniently studied using gamma rays [38]. Total 
Ionizing Dose (TID) testing using Co-60 γ sources remains the standard 
test method for space craft instrumentation qualification [39]. 

The main energy loss mechanism at the energy of Co-60 γ-rays is 
Compton scattering. This can lead to secondary electrons able to 
displace lattice atoms [40,41]. The primary displacement defects 
created in AlGaN by gamma-irradiation are Frenkel pairs, produced by 
these Compton electrons. The Non-Ionizing Energy Loss (NIEL) for 
gamma rays is much less than for ions, with only a few percent of the 
gamma photon flux creating secondary Compton electrons. 

In this paper we report on the response of UVC LEDs to Co-60 gamma 
rays. Even to fluences of 5 Mrad, no midgap emission is introduced and 
only modest decreases in band edge emission are observed. This fluence 
does not increase the degradation rate of output power under high drive 
currents. 

2. Experimental 

The 270 nm packaged LEDs (Klaran LA Series) with peak emission 
between 260 nm and 270 nm, >80 mW output power and mounted in 
3.5 mm × 3.5 mm surface mount diode packages were purchased from 
Crystal IS. The basic structure consists of epi layers from by Metal 
Organic Chemical Vapor Deposition on a (0001) AlN single crystal 
substrate. The buffer layer is ~0.5 μm of Al0.7Ga0.3N, followed by a 
multi-quantum well structure consisting of pairs of Al0.58Ga0.42N/ 
Al0.7Ga0.3N wells/barriers. There is an electron blocking layer prior to 
the p-GaN top contact layer. More details are described elsewhere by the 
supplier [42]. The bowing parameters and emission wavelength for 
AlGaN QWs as a function of Al composition are described elsewhere [43, 
44]. A photograph of one of the LEDs is shown at the top of Fig. 1, while 
the center and bottom shows the difference in the same device under 
bias without room illumination to show the almost complete absence of 
visible emission from midgap states. The current–voltage (I–V) charac-
teristics were recorded with an Agilent 4156C parameter analyzer was 
used for forward and reverse current and capacitance–voltage (C–V) 
measurements. The emission spectra were measured using an Avantes 
AvaSpec-ULS2048XL-EVO spectrometer, which was fiber-coupled the 
spectrometer to the UV LED with a 600 μm diameter fiber optic cable. 
Total output power measurements were made by coupling the LEDs to a 
Si photodetector in series with a 55 Ohm resistor, measuring the resistor 
voltage, and calculating the resultant power. The statistical spread in 
spectral characteristics of large batches of these LEDs has been reported 
previously [29,30]. 

Packaged devices were irradiated by a Co-60 irradiation facility 
within a 1 MW TRIGA facility at the RSEC, Penn State, with a dose rate of 
180 krad/h (±~10%), resulting in total fluence of 1 or 5 Mrad (Si). The 
isodose region was used to ensure isotropic gamma dose. The TID was 
calculated using the relation 1 rad (Si) = 2.0 × 109 photons. cm− 2, 
which represents the energy lost to ionization over mass. No secondary 
irradiation was induced in the AlGaN/AlN by Co-60 gamma rays. The 
LEDs were unbiased during the approximately 30-h exposure, and the 
generation rate in the AlGaN quantum wells was estimated to be ~1015 

e-h pairs/Gy.cm3 based on reported threshold energies for pair creation. 
The gamma rays pass through the entire packages structure, as evi-
denced from the mean-free path shown in Fig. 2 (top). This was obtained 
from the EpiXS code for photon attenuation [45]. The linear attenuation 
coefficients are dominated by Compton scattering for the energies of 
Co-60 γ-rays, as shown at the bottom of Fig. 2 [45]. 

Fig. 1. (Top) Optical microscope image of packaged UV LED (center) image of 
device at zero bias and (bottom) small amount of visible light observed under 
bias in the dark. In the top image the chip area is 3.5 × 3.5 mm2. 
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Fig. 2. (Top) Mean free path of γ-rays as a function of energy in AlN (bottom) linear attenuation coefficients as a function of photon energies. The specific case of 
specific case of Co-60 γ-ray energies are indicated by the vertical lines in both plots. 
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3. Results and discussion 

It is important to establish the statistical spread in the initial per-
formance of the LEDs so that the change in performance after irradiation 
can be quantified. Fig. 3 shows the I–V characteristics of 10 individual 
devices prior to irradiation, with outliers removed. The spread in their 
performance is comparable to the radiation-induced changes, so we 
identified each individual LED and kept track of their characteristics 
before and after the radiation exposure. We were very careful to 
compare the same devices before and after irradiation, and that’s why 
we kept track of the individual device number. We therefore feel very 
confident the changes seen after irradiation are representative. The I–Vs 
are typical of previously published reports, with turn-on voltages around 
4 V [29,30]. Outlier devices can be excluded by selecting for figures of 
merit, such as the UV power at 1 mA or 20 mA, the ratio of optical power 
within the main spectral peak to total optical power at low drive cur-
rents, reverse leakage current at a drive voltage of − 6 V, ideality factor 
before turn-on, and ideality factor after turn-on [29,30]. The ideality 
factors are generally >2 due to the presence of multiple current con-
duction mechanisms [46–48]. 

Fig. 4 shows the electro-luminescence spectra from a typical LED 
before and after 1 or 5 Mrad fluence. The panel at top shows the data in 
linear form, where it is clear the peak intensities have decreased by ~10 
and 35%, respectively, for 1 and 5 Mrad exposures. Noteworthy is the 
data in the bottom panel, where the log scale plots reveal there is no 
increase in the midgap emission from 400 to 600 nm. These transitions 
are usually ascribed to the presence of deep trap states, which degrade 
the optical and electrical performance of the LEDs [47,48]. This has 
important implications for the subsequent aging kinetics of the LEDs, as 
discussed later. The increase in non-radiative recombination centers in 
the quantum wells and barriers, and this behavior has been ascribed to 
Al or Ga vacancy complexes [32–34]. 

Fig. 5 shows the integrated power from the LEDs as a function of 
drive current before and after the fluences of 1 Mrad (top) or 5 Mrad 
(bottom). These were measured by the Si photodetector. The changes in 
output power support the small changes seen in peak bandedge intensity 
observed in the spectra. 

Fig. 6 shows the I–V characteristics from LEDs before and after 

irradiation with either 1 Mrad (top) or 5 Mrad (bottom). Within 
experimental error, there is no change in the I–V characteristics for the 
low fluence condition. For the 5 Mrad condition, we were able to find an 
LED with low initial reverse leakage and that showed an increase in both 
reverse and forward current after irradiation for voltages <4 V forward 
and <6 V reverse bias. This is consistent with previous report for devices 
where their performance was degraded by forward bias stressing [21]. 
This was ascribed to generation of point defects which form deep levels 
and act as non-radiative Shockley–Read–Hall recombination centers 
[32,49,50]. From the reverse bias capacitance change after irradiation, 
we found the carrier removal rate was <1 cm− 1. This is consistent with 
the small amount of displacement damage created by the γ-rays. We 
want to emphasize that the reverse current increase was only visible in a 
limited number of LEDs. These were devices with a lower initial reverse 
leakage, and we were able to see an increase with irradiation. Most 
devices did not show any significant increase after irradiation because of 
their higher initial reverse current. We did this to emphasize the 

Fig. 3. Collection of I–V characteristics from 10 different UV LEDs prior to 
irradiation. 

Fig. 4. (top) Output spectra from UV LED before and after irradiation with 1 or 
5 Mrad fluence (bottom same spectra, shown on log-scale. Note the absence of 
midgap emission, even after irradiation. 
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relatively small changes induced by even the highest gamma ray 
fluence. 

Fig. 7 shows that the aging characteristics of the LEDs under a high 
forward current of 95 mA was unaffected within experimental error by 
the irradiation fluence of 5 Mrad. This is consistent with the low con-
centration of midgap states evident from the emission spectra after 
irradiation. Wang et al. [21] reported that γ -irradiation accelerated the 
degradation of UVC LEDs induced by electrical stress. They employed 
lower Co-60 fluence of 1.75 Mrad (Si) but did use LEDs grown on sap-
phire substrates, which will have higher dislocation densities than the 
devices in this study and may have made the devices more prone to 
degradation during forward bias stressing. Our results show the benefit 
of advanced AlN substrates for growth, which improve LED performance 
(external and internal quantum efficiency) as well as LED lifetime. 

4. Summary and conclusions 

UVC LEDs grown on AlN substrates show robustness against Co-60 
γ-rays to fluences of 5 Mrad (Si) and show their applicability to 

operation in radiation environments such as space or nuclear plants. The 
devices show a decrease of ~40% in peak emission intensity as a result 
of the irradiation, with relatively small changes in the electrical char-
acteristics due to trap-assisted tunnelling. The absence of midgap 
emission in the unirradiated LEDs is an advantage, since it is clear that a 
threshold density of midgap states are needed to affect the subsequent 
aging characteristics and starting with a low number means the intro-
duction of traps by irradiation doesn’t reach this threshold. 

Given the previously established radiation hardness of UV LEDs to 
proton irradiation, our results add to the notion that these devices will 
be well-suited to space-borne applications. 
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