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1 mm2, 3.6 kV, 4.8 A NiO/Ga2O3 Heterojunction Rectifiers
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Large area (1 mm2) vertical NiO/β n-Ga2O/n
+ Ga2O3 heterojunction rectifiers are demonstrated with simultaneous high breakdown

voltage and large conducting currents. The devices showed breakdown voltages (VB) of 3.6 kV for a drift layer doping of 8 ×
1015 cm−3, with 4.8 A forward current. This performance is higher than the unipolar 1D limit for GaN, showing the promise of
β-Ga2O3 for future generations of high-power rectification devices. The breakdown voltage was a strong function of drift region
carrier concentration, with VB dropping to 1.76 kV for epi layer doping of 2 × 1016 cm−3. The power figure-of-merit, VB

2/RON,
was 8.64 GW·cm−2, where RON is the on-state resistance (1.5 mΩ cm2). The on-off ratio switching from 12 to 0 V was 2.8 × 1013,
while it was 2 × 1012 switching from 100 V. The turn-on voltage was 1.8 V. The reverse recovery time was 42 ns, with a reverse
recovery current of 34 mA.
© 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
2162-8777/aceaa8]
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There is great current interest in the development of power
electronic devices based on monoclinic β-Ga2O3.

1–16 There have
been demonstrations of high breakdown voltages above 8 kV in
relatively small devices of both vertical rectifiers8 and lateral
transistors intended for lower current applications.11–13 A promising
recent development has been the use of NiO as a p-type conducting
layer to produce p-n heterojunctions with the n-type Ga2O3.

17–31

This to some extent mitigates the lack of a native p-type doping
capability for Ga2O3. There remain many challenges, including
optimizing edge termination, and managing heat dissipation, which
will be needed if adequate device reliability is to be
achieved.1,3,23,32–38 Another crucial focus is to have larger area
devices to achieve high conduction currents, while simultaneously
retaining the kV breakdown characteristics.23,32,34–43 Qin et al.1

recently reviewed the status of packaging and device performance of
Ampere-class Ga2O3 Schottky, Junction Barrier Schottky, hetero-
junction rectifiers and MOSFETs and their switching recovery
characteristics, and surge-current and over-voltage ruggedness.

While small area devices now have breakdown voltages ex-
ceeding the unipolar limit of both SiC and GaN power devices, large
area, Ampere-class Ga2O3 vertical devices have not yet reached this
milestone.1

In this paper, we demonstrate 1 mm2, 4.8 A, 3.6 kV VB vertical
NiO/Ga2O3 rectifiers, with performance above the unipolar limit of
both GaN and SiC. The power figure of merit (FOM) is
8.64 GW.cm−2, with reverse recovery time of 42 ns.

Experimental

Figure 1 top shows a schematic of the vertical heterojunction
rectifier structure. The drift region was a 10 μm thick, lightly Si
doped (8 × 1015 cm−3) layer grown by halide vapor phase epitaxy
(HVPE) on a (001) surface orientation Sn-doped β-Ga2O3 single
crystal (Novel Crystal Technology, Japan). The X-ray diffraction
full width at half maximum of the substrates are <350 arc.s in both
[100] and [010] directions. For comparison, we also fabricated
devices in the identical fashion on structures with drift region doping
2 × 1016 cm−3, also obtained from Novel Crystal Technology. The
backside Ohmic contact used e-beam evaporated Ti/Au with a total
thickness of 100 nm. This was annealed at 550 °C for 60 s under
N2.

10,32,33 The p-n heterojunction was formed by rf magnetron
sputter deposition of a bilayer of NiO.10 The working pressure was

3mTorr at 80 W power. The deposition rate of 0.06 Å.s−1. This is
very slow but is necessary to avoid damage to the Ga2O3 surface.
The bias voltage on the cathode of the sputtering system is around
50 V at 80 W power. At higher biases, we have noted visible lattice
disorder by electron microscopy.10 Full details of the properties of
the NiO have been published elsewhere.44 Contact to the NiO was
made through e-beam deposition of 100 nm total thickness of Ni/Au
with contact diameter 1 mm. An optical image of the completed
devices is shown in Fig. 1(bottom).

Current-voltage (I-V) characteristics were recorded in Fluorinert
atmospheres at 25 °C on a Tektronix 371-B curve tracer and
Glassman high voltage power supply. An Agilent 4156 C was also
used for forward and reverse current characteristics. The reverse
breakdown voltage was obtained from the standard definition of
reverse current reaching 1 mA.cm2. The on-resistance was calculated
from the slope dV/dI of the I-V characteristics8,26 and corrected for
the resistance of the external circuit (cables, chuck and probe), which
was 10 Ω. The on-resistance values were calculated assuming the
current spreading length is 10 um and a 45° spreading angle. The
RON normally reported is the unipolar drift resistance, which is
usually smaller than the diffusion resistance. The I-V characteristics
were reproducible over areas of 1 cm2 on the wafer, with absolute
currents within 20% at a given voltage.

Results and Discussion

The forward I-V characteristics are shown in Fig. 2 (a) for the
1 mm diameter devices fabricated with the 8 × 1015 cm−3drift
layers. The maximum forward current was 4.8 A, with 1 A reached
at 4 V forward. This shows the presence of the p-n junction does not
prevent reaching high forward currents at moderate biases. The on-
resistance was 1.5 mΩ. cm−2. The on-off ratio was 2 × 1013 for
switching from 12 V to 0 V. The same data is shown in linear form
in Fig. 2 (bottom), showing the turn-on voltage was 1.8 V.

The reverse I-V characteristics are shown in Fig. 3 (top) for the
devices fabricated on both the 8 × 1015 cm-3 and 2 × 1016 cm−3 drift
layers. The former exhibit breakdown voltage (VB) values of 3.6 kV,
the highest yet reported for large area Ga2O3 rectifiers.1 The
decrease in drift layer carrier concentration has a significant effect on
VB, with the devices with higher doping having breakdown voltages
roughly half that of the lower doped devices. The power figure of
merit was 8.64 GW.cm−2 for the 3.6 kV devices. This is approxi-
mately 25% of the theoretical maximum for β-Ga2O3, showing there
is still room for optimizing device design and material defect
density.1–5 The average electric field strength was 3.56 MV cm−1,zE-mail: spear@mse.ufl.edu
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an appreciable fraction of the expected maximum near 8 MV.cm−1

and among the highest reported, particularly for large area
devices.1,2 The bottom of Fig. 3 shows the reverse I-V up to
−100V, with the current density being <10–10 A.cm−2 to this
voltage. As previously reported, there are several leakage current
mechanisms present, including variable range hopping and trap-
assisted space-charge-limited current.10,20,30 The former shows a

linear relationship of ln(J)-E at lower biases, while at higher
voltages, there is a linear relationship of ln (J)-ln (V).

The on/off ratio when switching from 12 V forward to the reverse
bias on the x-axis is shown in Fig. 4 for the 1 mm2 devices with the
low drift layer concentration. The values are >2 × 1012 when
switching to −100V, showing the excellent rectification character-
istics of these large area devices and the highest yet reported.1

Figure 5 shows the reverse recovery waveform when switching
from 120 mA forward current at a duty cycle of 2%. The reverse
recovery time is 42 ns, with a reverse recovery current of 34 mA.
The recovery time is approximately twice that for small rectifiers
with areas 5–8 × 10−3 mm2, i.e. 100–200 x smaller than the 1 mm2

devices.10,45,46

To place the work in context, Fig. 6 shows a compilation of
reported Ron vs VB results reported in the literature for Ampere-
class rectifiers and includes conventional Schottky barrier or JBS
rectifiers and NiO/Ga2O3 heterojunction rectifiers.23,33–44 The theo-
retical lines for the 1D unipolar limits of SiC, GaN and Ga2O3 are
also shown. The result in this work is the first demonstration of large
area, Ampere-class Ga2O3 rectifiers surpassing the theoretical limits
of GaN and SiC.

Figure. 7 shows a compilation of on/off ratios as a function of the
Baliga FOM for large area Ga2O3 rectifiers. The results in this
current work show how lowering the drift region carrier concentra-
tion and optimization of the device processing parameters have led
to improvement in device performance. For example, the reduction
in carrier density made a more than 2x improvement in VB, while

Figure 1. (top) Schematic of NiO/Ga2O3 heterojunction rectifier. (bottom)
optical micrograph of array of 1 mm2 rectifiers.

Figure 2. (top) Log plot of forward current densities and RON values of
NiO/Ga2O3 heterojunction rectifiers (bottom) linear plot of forward I-V
characteristics of NiO/Ga2O3 heterojunction rectifiers.

ECS Journal of Solid State Science and Technology, 2023 12 085001



optimizing the NiO thickness and doping also had significant effects
on the dc characteristics.

We have recently examined the high temperature performance of
NiO/Ga2O3 rectifiers and found them to be much more stable up to

Figure 3. (top) Reverse I-V characteristics and breakdown voltage of
NiO/Ga2O3 heterojunction rectifiers. (bottom) expanded view of reverse
leakage current-bias voltage characteristics to −100V.

Figure 4. On-off ratio of NiO/Ga2O3 heterojunction rectifiers in which the
bias was switched from 5 V forward to the voltage shown on the x-axis.

Figure 5. Switching waveform for NiO/Ga2O3 heterojunction rectifiers for a
2% duty cycle.

Figure 6. Compilation of Ron vs VB of conventional and NiO/Ga2O3

heterojunction rectifiers reported in the literature.

Figure 7. Compilation of on-off ratio vs BFOM of conventional and
NiO/Ga2O3 heterojunction rectifiers reported in the literature.
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600 K than Schottky rectifiers fabricated on the same wafers.47,48

Such devices exhibit breakdown fields >8.5 MV.cm−1, establishing
this as a lower limit for β-Ga2O3.

49

Summary and Conclusions

In summary, we report large area NiO/β-Ga2O3 p-n heterojunc-
tion rectifiers with VB 3.6 kV, on/off ratio >2 × 1012 up to 100 V,
with Ron of 1.5 mΩ·cm2 and a figure-of-merit (Vb

2/Ron) of
8.64 GW.cm−2. The results show that with state-of-the-art epitaxial
structures, the use of the NiO p-layer to form a heterojunction with
the Ga2O3, a simple, planar fabrication technology produces results
exceeding the 1D unipolar performance of GaN and SiC. This is
very encouraging considering the other advantages of Ga2O3,
including low production costs and scalable bulk growth technology.
A key area for future work is to reduce the damage created by
sputtering of the NiO, perhaps by using direct MOCVD growth, as
demonstrated recently.50 There also needs to be further under-
standing of edge termination and possible minority carrier effects on
modulation.51–53
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