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Abstract—Schottky rectifiers with implanted pt guard ring  motor efficiency. Other end uses include lighting, heating, and
edge termination fabricated on free-standing GaN substrates air-conditioning [9], [10]. A key component of the inverter

show reverse breakdown voltages up to 160 V in vertical geometry qqyles for these applications is the simple rectifier. There

devices. The specific on-state resistance was in the range 1.7—h b b f ts of d lateral t
3.0 Q-cm?, while the turn-on voltage was~-1.8 V. The switching ave been a number ot reports of mesa and lateral geometry

performance was analyzed using the reverse recovery current GaN and AlGaN Schottky and p-i-n rectifiers fabricated on
transient waveform, producing an approximate high-injection, —heteroepitaxial layers on AD; substrates [11]-[19]. A major
level hole lifetime of ~15 ns. The bulk GaN rectifiers show disadvantage of this approach is the poor thermal characteristics
significant improvement '2 forward cu_rrlegt density and on-state  f the sapphire and the limited epilayer thicknesses employed.
resistance over previous e_teréep'taX'a evices. _ ~ Factors limiting these thicknesses include cracking of the GaN,
_ Index Terms—Edge termination, GaN, power electronics, recti- rough surface morphologies and auto-doping effects from the
erI’S, reverse recovery. .
sapphire substrate.
A variety of approaches have been used recently to produce
I. INTRODUCTION free-standing GaN substrates with thicknesses up200 ;;m.

APID progress has been made in recent years in &é/_e reported initial results on unterminated rectifiers on these
veloping GaN-based electronics for use in high-powe pes of substrates as a function of contact diameter (44—

high-frequency applications [1]-[8]. The availability of the 48.“m) [19]. The rgsults were promising enough that we
AlGaN/GaN heterostructure allows modulation doping t .br|cated edge terminated devices with a much larger range of
form a high-mobility two-dimensional (2-D) electron gas an iameters (54-7000m). The reverse breakdown and reverse

the formation of piezoelectrically-induced sheet carriers sdpcovery characteristics of these rectifiers are reported in this

high-current density [2]-[7]. The GaN materials system hasP&Per-
high breakdown field, good saturation electron velocity, and
reasonable thermal conductivity if bulk wafers are available. Il. EXPERIMENTAL

One of the immediate applications for GaN power rectifiers The free-standing substrates wer800 ;m thick and were
could be for use in the electric power utility industry. A majogBrOWn by high-rate vapor phase epitaxy on c-plangdlsub-
problem in the existing grid is momentary voltage sags, whidjrates and removed by differential heating from a laser beam
affect motor drives, computers, and digital controls. A systefg], [21]. Capacitance-voltag€—V)measurements showed an
for eliminating power sags and switching transients woulghintentional n-type doping level @8 x 106 cm—3. P-type
dramatically improve power quality [10]. An outage of lesguard rings (3um diameter) were formed by selective area
than one cycle, or a voltage sag of 25% for two cycles cafig+ implantation (50 keV, 5< 1014 cm~2), followed by an-
cause a microprocessor to malfunction. The high cost of mo{Qgajing at 1100°C for 30 s. Full-area back Ohmic contacts
repairs each year could be dramatically reduced by high-powgrti/al/Pt/Au were deposited by e-beam evaporation and an-
electronic devices that permit smoother switching and contrglegled at 700C for 30 s. On some of the samples we also placed
In addition, control electronics could dramatically improverj/al/Pt/Au Ohmic contacts on the front surface so we could
compare vertical versus lateral device geometries. Schottky con-
Manuscript received June 19, 2001; revised September 27, 2001. tBets of e-beam evaporated, unannealed Pt/Ti/Au with diame-
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Fig. 2._ (Top) Photqgraph of large diameter Schottky rectifiers and schematic Vg = M
of device cross section (bottom). 2
whereW ), is the depletion depth at breakdown. However it has
IIl. RESULTS AND DISCUSSION been amply demonstrated in other materials systems such as
SiC that the presence of defects (dislocations, nanopipes) leads

The large-area diode had a reverse breakdown voltdge, to premature breakdown in diodes [22]-[24]. In addition, sur-
of only 6 V. By sharp contrast, the small-area diodes shigw face defects around the periphery of the devices will also de-
values of~120 V in the lateral mode ang160 V in the ver- grade the breakdown and increase reverse leakage. From plots
tical mode. The-V characteristics from the large and small-areaf reverse leakage versus contact periphery length or area of the
vertical diodes are shown in Fig. 3 (top), along with an exype we have published previously [15], it is clear in our diodes
panded view of the forward characteristic of the small-area dixat surface leakage is the dominant contributor to the current.
vices (bottom). These results have several implications. Fir§he second key implication from Fig. 3 is that the small area
they suggest that the presence of defects in the depletion regitodes show a largéry in the vertical geometry. This indicates
or around the contact periphery have a major effect on the eléitat the surface plays a major role in determinifg, because
trical characteristics. The defect density of the Ga-faeeli§® even though the vertical GaN thickness~&00 xm and the
cm~—2 in the GaN as measured by etch pit counting by atom@hmic-gate spacing is30 :m for the lateral diodes, we are in

force microscopy. There will obviously be a higher concentréihe punch-through region for both types of devices.
tion of total defects (by roughly a factor of 4)in the region Fig. 4 shows the temperature dependence of reverse current
under the contact of the large area devices. In defect-free nmaa typical 75um diameter vertical geometry rectifier (top),
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Fig. 5. Calculated breakdown voltage as a function of doping concentration
and active layer thickness in GaN rectifiers.

forward and reverse leakage increasing rapidly with operating
temperature. The reverse breakdown still showed a negative
temperature coefficient, similar to previous work, suggesting
that more work needs to be done to reduce the surface and bulk
defect density. The reverse current was thermally activated with
an activation energy of 0.1 0.04 eV and this may represent
the most prominent surface state giving rise to the current since
surface leakage was the dominant contributor. As mentioned
earlier, over the small range of diameters, reverse current was
proportional to contact diameter. This indicates that the reverse
current originates from surface periphery leakage.

Fig. 5 shows a plot of avalanche and punch-through break-
down of GaN Schottky rectifiers calculated as a function of
doping concentration and active layer thickness. It can be
seen that, for example, a 20 kV device could be achieved
with ~100 xm thick GaN layer with a doping concentration
<10'> cm~3. The data points on the plot represent fig
values from the present work. The biggest issue facing GaN
rectifiers achieving very high breakdown voltages is now to
reduce the background doping in the free-standing substrates.
Our previous work on lateral diodes fabricated on fairly
resistive GaN and AlGaN showéd; values up to 9.7 kV, even
though the defect density was very highl0® cm~2) [12].

The reverse recovery waveforms from a small-area vertical
geometry GaN rectifier and from a standard “fast recovery” 1 A,
600 V, 200 nsec Si diode are shown in Fig. 6 (top). The devices
were switched from forward current densities of 40@m—2
to a reverse bias of 25 V. The GaN data shows that nanosecond
switching times are possible. Note also the significantly lower
reverse current in the GaN device due to the smaller amount
of stored charge. Following the analysis of Khengtaal. [1],
we estimate a value 615 ns for the high-injection, level hole
lifetime in our rectifiers. This is within the range of 1-20 ns for

Fig. 4. (Top) Temperature dependence of reverse leakage/imi7diameter previously reported minority carrier lifetimes in n-GaN [25].
vertical geometry rectifiers, (middle) reverse breakdown voltage, and (bottom) The specific on-state resistancéGiN) for the three types of

forward |-V characteristics of same diodes.

rectifiers measured were 3{rcn? for the small-area vertical
diodes, 1.7 rfe-cn? for the small-area lateral diodes, and 3.4

along with the temperature dependence of the reverse bre@ken? for the large-area devices. To place these results in con-
down voltage (middle) and forward current (bottom). Thedext, Fig. 7 shows a plot ok versusVg for GaN rectifiers
bulk rectifiers still show poor thermal characteristics, with botheported in the literature. The lines show theoretical results for
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Fig. 6. (Top) GaN rectifier reverse recovery characteristics fromund

diameter device, compared to (bottom) standard 1 A, 600 V Si diode.
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Fig. 8. Forward turn-on voltage versus reverse breakdown voltage for GaN
rectifiers. The curves show theoretical values expected for different barrier
heights.

The forward turn-on voltagé/r, for a Schottky rectifier is
given by

Vi = nkTT In <ﬁ) +n¢p + Ron - Jr
wheren is the ideality factor,l’ the absolute temperature,
the electronic charge}** is Richardson’s constant, awig; the
Schottky barrier height. Defininyr as the voltage at which the
forward current density is 100-Am~2, we obtained values of
~1.8 V for the small-area rectifiers. These are shown in Fig. 8,
along with previously reported results from GaN rectifiers. The
solid lines are theoretical values assuming various Schottky bar-
rier heights. Thé’r values in the present work are significantly
lower than reported previously, indicating that surface cleaning
and oxide removal steps have improved over time [26], [27].

IV. SUMMARY AND CONCLUSION

Schottky rectifiers fabricated on free-standing GaN sub-
strates show significant improvements in forward turn-on
voltages, on-state resistance, and reverse recovery characteris-
tics relative to previously reported devices fabricated on GaN
layers grown on sapphire. Future work should focus on low-
ering the background doping level in the GaN substrates and
in measuring the temperature dependencé’of Roy, and
Vg in rectifiers on this optimized material. Previously reported
heteroepitaxial rectifiers have shown a negative temperature
coefficient for Vg, but this is expected to reverse sign in low
defect material as was observed for SiC [23]. The viability of
GaN rectifiers in most applications depends on making very

Fig. 7. Specific on-state resistance versus breakdown voltage for Gpéfge area devices with highg, while retaining lowVz and

rectifiers reported in the literature. The lines show theoretical results for

SiC, and GaN.

Si, SiC, and GaN rectifiers from [1]. There has been a steady1
improvement in the on-state resistances over the past few year[s]

as material and processing quality have improved.

Fon.
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