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AZO interlayers between n-Ga2O3 and Ti/Au metallization significantly enhance
Ohmic contact formation after annealing at≥ 300◦C. Without the presence of the AZO,
similar anneals produce only rectifying current-voltage characteristics. Transmission
Line Measurements of the Au/Ti/AZO/Ga2O3 stacks showed the specific contact resis-
tance and transfer resistance decreased sharply from as-deposited values with anneal-
ing. The minimum contact resistance and specific contact resistance of 0.42Ω-mm and
2.82 × 10-5 Ω-cm2 were achieved after a relatively low temperature 400◦C annealing.
The conduction band offset between AZO and Ga2O3 is 0.79 eV and provides a favor-
able pathway for improved electron transport across this interface. © 2017 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4996172]

There is significant promise in β-Ga2O3 for use in electronics for extreme environments (high
temperature, high radiation and high voltage switching)1–15 and for solar blind UV detection.16 Ga2O3

is suited to these applications because of its wide bandgap, ∼4.8 eV and high theoretical critical field
strength ∼8 MV/cm (experimental values have reached 3.8 MV/cm).13 Ga2O3 bulk and epitaxial
crystals can be grown by many methods including Czochralski, edge-defined film-fed growth (EFG),
Verneuil, float-zone, molecular beam epitaxy (MBE), halide vapor phase epitaxy growth (HVPE), with
excellent control of quality and n-type conductivity.1,2,14,15,17 The β-phase of Ga2O3 has a monoclinic
structure and is the most commonly studied of the different polymorphs.1,2,18–21 Excellent results for
β-Ga2O3-based power rectifiers, field effect transistors (FETs) and metal-oxide FETs (MOSFETs)
have been reported,2,4–13 along with solar blind photodetectors.1,2,16 In all cases, these devices would
benefit from an improved low resistance Ohmic contacting process that requires only moderate
annealing temperatures.4,8

To date, the lowest specific contact resistance of ∼4.6×10-6 Ω-cm2 was reported for Ti/Au
contacts on n-Ga2O3 epitaxial layers with Si implanted and annealed at 925◦C followed by dry
etching, metal deposition and annealing at 470◦C.21 Yao et al. explored nine different metals with
Au capping layers to form Ohmic contact on Ga2O3, with many current-voltage ( I-V) results being
pseudo-Ohmic, and the best results obtained using Ti/Au.22 For a metal deposited on an n-type
semiconductor to achieve Ohmic contact requires the work function of the metal to be close or
smaller than the electron affinity of the semiconductor. The reported electron affinity of β-Ga2O3 is
∼4.00 ± 0.05 eV,23,24 which limits the available options of metals.

Another option is to use a transparent conducting oxide (TCO) as an interlayer between the
metal and substrate. Traditionally, the most used TCO is indium tin oxide (ITO), which combines
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high conductivity and optical transparency in the visible region of the spectrum. Previous reports
of sputtered ITO as an intermediary layer for forming Ohmic contacts on Ga2O3 also needed high
temperature annealing to produce good quality contacts.25 A Pt/ITO bi-layer contact to β-Ga2O3

showed superior Ohmic contact properties compared to Pt/Ti and this was ascribed to the formation
of an interfacial layer with lower bandgap and higher doping concentration than the Ga2O3.25 The
band alignment at the heterointerface is critically important in determining the favorability of carrier
transport. AZO is another alternative that is widely used as a TCO with lower cost relative to ITO.26

AZO has been heavily studied for transparent and flexible device applications such as display panels,
gas sensors, organic light emitting diodes, and other optoelectronic devices.27–32

In this letter, we report on the use of AZO interlayers in facilitating Ohmic behavior in Ti/Au
contacts on n-type, Si implanted β-Ga2O3. The minimum specific contact resistance of 2.82×10-5

Ω-cm2 was achieved after annealing at 400◦C. By sharp contrast, Ti/Au contacts without the AZO
did not lead to Ohmic behavior.

The samples used were bulk 2in. β-Ga2O3 single crystal wafers with (-201) surface orientation
grown by EFG. Hall measurements showed these were n-type (electron concentration of ∼ 2.2 × 1017

cm-3). Si+ implantation was performed at an energy of 30 keV with a dose of 1 × 1015 cm-2 into the
front surface of the samples, which were then annealed at 950◦C to activate the implanted ions and
increase the surface conductivity.

We deposited 10 nm of AZO by RF magnetron sputtering on the Si implanted β-Ga2O3 at ∼30◦C
using a 3-in. diameter composite AZO (Al2O3/ZnO2 2/98 wt %) target. The RF power was 125 W and
the pressure was 5 × 10�6 Torr in a pure Ar ambient. The DC bias on the electrode was in the range of
30-40V. The contact metal pads (100 µm on a side) for transmission line method (TLM) testers were
formed by standard lift-off of E-beam deposited Ti/Au (20 nm/80 nm) metallization. AZO was wet
etched from between the contact pads using 1:10 HCl:DI water. Cl2/Ar dry etching was used to define
the 0.5 µm deep mesas of TLM test patterns prior to AZO deposition in a Plasma-Therm Versaline
inductively coupled plasma (ICP) tool at 300 W (2 MHz) ICP power and 150 rf (13.56 MHz) chuck
power (dc self-bias of -150V on the sample electrode). A SSI Solaris 150 rapid thermal annealing
system was used to anneal the contact in the nitrogen ambient. Figure 1 shows a schematic of the
contact stack structures with and without AZO interlayers. The contact properties were measured
over the range 25-150◦C. Current-voltage (I-V) characteristics were measured with an Agilent 4145B
parameter analyzer.

We previously determined the valence and conduction band offsets in rf-sputtered AZO and
single crystal β-Ga2O3 heterostructures.33 The bandgaps of the component materials were 4.6 eV
for Ga2O3 and 3.2 eV for AZO, with AZO/Ga2O3 system having a nested gap (type I) alignment, as
shown in Figure 2. Thus, use of a thin layer of AZO has the ability to reduce the barrier for electron
transport and hence the contact resistance between the metal and Ga2O3.

The I-V characteristics of Ti (20nm)/Au(80nm) on β-Ga2O3, annealed at temperatures of 300,
400, 500, and 600◦C, all demonstrated high resistance Schottky behavior (Figure 3a). Introduction of
the AZO interlayer significantly improved current transport (Figure 3b). Low temperature annealing
further improved the Ohmic behavior, with compliance of 100 mA reached first by the sample
annealed at 400◦C. Increasing annealing temperature further did not improve performance. In previous
works, annealing above 300◦C has been found to decrease the carrier concentration and electron
mobility within the AZO layer26–30 thus a lower current flow would be expected from higher annealing

FIG. 1. Schematic of (a) Au/Ti and (b) Au/Ti/AZO contact stack on Si-implanted Ga2O3.
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FIG. 2. Schematic of band offset for AZO on Ga2O3.

FIG. 3. I-V of (a) Au/Ti/Ga2O3 and (b) Au/Ti/AZO/Ga2O3 contact stacks as a function of annealing temperatures from
as-deposited (black lines) to 600◦C (purple lines). The 200◦C data is similar to the as-deposited and the contact resistance
decreases with temperature in the AZO-based contacts.

temperatures and can be seen when comparing the I-V curves of annealing temperatures 400◦C and
600◦C.

The TLM data was used to extract the sheet resistance (RS), specific contact resistance (RC), and
transfer resistance (RT). A sample output resistance vs. gap size from AZO contact stack annealed
at 400◦C is shown in Figure 4, and a strong linear dependence (r2 = 0.991) is observed. The sheet
resistance had a minimum of 41 Ω/ after 200◦C annealing (Figure 5) due to incomplete removal of
sputter induced damage. Transfer and specific contact resistance had minimums of 0.42 Ω-mm and
2.82 x 10-5 Ω-cm2, respectively, both after annealing at 400◦C (Figure 5). Initially, all resistances
decrease due to interaction between the AZO and Ga2O3 and removal of damage from the ion
bombardment from sputtering, but as the crystallinity of the AZO layer improves above 400◦C, the

FIG. 4. TLM data of Au/Ti/AZO/Ga2O3 contact stack resistance as a function of gap spacing.
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FIG. 5. Sheet resistance, specific contact resistance and transfer resistance as a function of annealing temperature for
Au/Ti/AZO/Ga2O3 contact stack.

flow through the layer is inhibited slightly. It will be important to perform future studies of the contacts
with transmission electron microscopy to understand any changes in interfacial structure and the role
of both AZO thickness and choice of metal. We did find that annealing of the bare Ga2O3 up to 600◦C
did not affect the carrier density or mobility of the layers.

FIG. 6. Specific contact resistance, Rc, as a function of measurement temperature for a Au/Ti/AZO/Ga2O3 contact stack
initially annealed at 400◦C for 30 secs.
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The effect of operating temperature was also explored on a Ti/Au/AZO/Ga2O3 stack annealed
at 400◦C in N2 for 30 seconds. The temperature was increased from 25◦C to 150◦C in increments of
25◦C. As the temperature rose, minimal change in specific contact resistance was observed (Figure 6),
this is an advantage for high temperature power device application. With these operating temperatures,
no degradation of the contact was observed.

In summary, the inclusion of AZO interlayers on Ti/Au contacts to n-type Ga2O3 was found to
enhance electron transport across the heterointerface, leading to Ohmic behavior. The band alignment
of AZO on Ga2O3 reduces the barrier for conduction. Au/Ti/AZO/Ga2O3 contact stacks exhibit
minimum contact resistance and specific contact resistance of 0.42 Ω-mm and 2.82 x 10-5 Ω-cm2,
respectively, after annealing at a relatively low temperature of 400◦C. Without the AZO, similar
anneals did not lead to linear current-voltage characteristics of Au/Ti/Ga2O3 contact layers. Future
studies should focus on an examination of the transport mechanism in the AZO-based contacts and
changes in the interfacial structure with annealing.
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