Yeongseon Jang
Assistant ProfessorResearch Summary
MY RESEARCH GROUP SEEKS TO PROVIDE INSIGHTS AND SOLUTIONS IN THE FIELD OF SUPRAMOLECULAR BIOMATERIALS. We are aiming at engineering structural and functional properties of supramolecular biomaterials for target applications including smart capsules, micro-reactors, antibacterial and/or drug release coatings. The vision of our lab is to utilize soft matter assembly and recombinant technology for the creation of advanced biomaterials. From the deep understanding of the interactions between soft matters, including polymers, proteins, and colloids, we develop supramolecular biomaterials to present target microscopic structure, physical properties, and functionality. We also apply recombinant protein technology to rationally design functional building blocks. The supramolecular biomaterials developed in my research group include multicompartment vesicles, porous thin films, multilayer coatings, and a variety of self-assembled structures in solutions or at surfaces.
MULTICOMPARTMENT PROTEIN VESICLES FOR PROTOCELL DEVELOPMENT We seek to create multicompartment vesicles made from functional globular fusion proteins with controlled geometry by using microfluidics and microarrays fabricated via soft lithography. Micro-protein vesicles can carry multiple biological cargoes, which enables rational design of smart capsules for targeted drug delivery, bioreactors, and/or directional assembly to a hierarchical structure.
FUNCTIONAL PROTEIN THIN FILMS FOR CELL FATE CONTROL We develop functional protein thin films and coatings to control cell fate at the surfaces. Thin films with controlled nanostructure (i.e., nanoscale pores or multilayers) are developed by non-solvent induced phase separation or layer-by-layer deposition with a spin-coating process. The functional protein thin films have a variety of biomedical applications, such as stem cell co-culture platforms, antibacterial surfaces, and drug release patches.
PHASE STUDY OF GLOBULAR PROTEIN-FUSED DIBLOCK COPOLYMERS We aim to provide the fundamental understanding of the self-assembly of globular proteins fused with diblock copolymers that exhibit complex interactions. We study the phase transition/separation behavior of the globular fusion proteins in solution and at interface/surface under diverse physical and chemical stimuli, mainly using scattering and microscopic techniques. This study enables us to create new suprastructure with functional globular proteins.
Education
Ph.D., 2013, Seoul National University
B.S., 2008, Seoul National University
Research Areas
Self-Assembly
Colloid and Surface Science
Functional Coating
Polymer Engineering
Biomaterials
Recombinant Proteins
Awards & Distinctions
- Outstanding Support for Women in Engineering Award, UF Society of Women Engineers, 2023
- KIChE President Young Investigator Award, 2021
- National Science Foundation CAREER Award, 2021
Publications
- Jooyong Shin, Yinhao Jia, Janani Sampath, Yeongseon Jang,* “Phase Transition of Recombinant Fusion Protein Assemblies in Macromolecularly Crowded Conditions”, Materials Advances 2024, 5(10), 4200-4208.
- Jackson Powers, Yeongseon Jang*, “Advancing Biomimetic Functions of Synthetic Cells through Compartmentalized Cell-Free Protein Synthesis”, Biomacromolecules 2023, 24, 5539-5550.
- Jin Yoo, Youngmee Jung, Kookheon Char, Yeongseon Jang*, “Advances in cell coculture membranes recapitulating in vivo microenvironments”, Trends in Biotechnology 2023, 41, 214-227.
- Elizabeth L Meier, Yeongseon Jang*, “Surface Design Strategies of Polymeric Biomedical Implants for Antibacterial Properties”, Current Opinion in Biomedical Engineering 2023, 26, 100448.
- Jooyong Shin, Yeongseon Jang*, “Rational Design and Engineering of Polypeptide/Protein Vesicles for Advanced Biological Applications”, Journal of Materials Chemistry B 2023, 11, 8834 – 8847.
- Jackson Powers, Yeongseon Jang*, “Temperature-Responsive Membrane Permeability of Recombinant Fusion Protein Vesicles”, Soft Matter 2023, 19, 3273 – 3280.
- Ruwen Tan, Nicolas Marzolini, Peng Jiang, Yeongseon Jang*, “Bio-inspired Polymer Thin Films with Tailored Nanopillar Density for Enhanced Bactericidal and Antireflective Properties”, ACS Appl. Polym. Mater. 2020, 2, 12, 5808–5816.
- Ruwen Tan,† Jooyong Shin,† Jiwoon Heo, Blair D. Cole, Jinkee Hong, Yeongseon Jang*, “Tuning the Mechanical Properties of Self-Assembled Globular Protein Vesicles by Incorporation of Photo-crosslinkable Nonstandard Amino Acids”, Biomacromolecules 2020, 21, 10, 4336–4344.
- Yeongseon Jang*, Ming-Chien Hsieh, Dylan Dautel, Sherry Guo, Martha A Grover, Julie A Champion, “Understanding the Coacervate-to-Vesicle Transition of Globular Fusion Proteins to Engineer Protein Vesicle Size and Membrane Heterogeneity”, Biomacromolecules 2019, 20, 3494-3503.
- Yeongseon Jang*, Won Tae Choi,† Christopher Johnson, Andres Garcia, Preet M. Singh, Victor Breedveld, Dennis W. Hess, and Julie A. Champion, “Inhibition of Bacterial Adhesion on Nano-Textured Stainless Steel 316L by Electrochemical Etching”, ACS Biomater. Sci. Eng. 2018, 4, 90–97. [†Equally Contributed to This Work]
- Yeongseon Jang*, Julie A. Champion “Self-Assembled Materials Made from Functional Recombinant Fusion Proteins”, Accounts. Chem. Res. 2016, 49, 2188-2198.