We generate insights on the dynamics of complex systems through experiments, theoretical analysis, and simulation. Aims of the research include enabling the efficient control and processing of these systems which are used in a wide range of industries, products, and emerging technologies.
Faculty
My research group focuses on rational design and engineering of next generation electrochemical systems for human convenience, energy, environment, and sustainability. We seek to address key questions related to the electrochemical systems by leveraging electrochemistry, materials chemistry, and device engineering. Our interests include (1) synthesis of new materials for electrochemical devices, (2) combining electroanalytical chemistry (i.e.…
Our group focuses on designing advanced polymer materials for clean energy, clean water, and environmental sustainability. We combine modular polymer synthesis with experimental tools that probe both molecular-scale and macroscopic transport in polymers with the goal of informing predictive design of the next generation of materials for membrane-driven separations.
A few areas of interest to our group are:
Predicting gas separation membrane performance in realistic environments
Polymer membranes offer a competitive option for energy-efficient carbon capture and hydrocarbon purification; however, many promising materials developed in the lab fail to perform as well in the field. …
ELECTROCHEMICAL ENGINEERING The research performed in this group represents applications of electrochemical engineering to systems of practical importance. In recent work, electrokinetic phenomena were exploited to enhance continuous separation of water from dilute suspensions of clay associated with phosphate mining operations. The technology developed in this project is intended to greatly reduce the environmental impact of mining operations.…
MY GROUP STUDIES THE BEHAVIOR AND BIOMEDICAL APPLICATIONS OF MAGNETIC NANOPARTICLES. We combine expertise in synthesis and surface modification of magnetic nanoparticles, physical, chemical, and magnetic characterization, and modelling to understand the colloidal behavior of magnetic nanoparticles, their interaction with biological entities, and to advance their biomedical applications. We are actively investigating novel methods of synthesizing nanoparticles with tailored magnetic properties, evaluating nanoparticle stability and mobility in biological environments, and advancing applications of magnetic nanoparticles in cancer therapy and magnetic particle imaging.…
WE STUDY POLYMERS, PROTEINS, AND THEIR HYBRIDS TO DESIGN THE NEXT GENERATION OF SOFT MATERIALS using molecular dynamics simulations, high throughout computations, and enhanced sampling methods. To sustain materials discovery in the future given the limited resources at our disposal, predictive engineering techniques must be employed to allow for efficient design and optimization of materials.…
NEARLY ALL NANOMATERIAL APPLICATIONS REQUIRE an interface with other materials, including, for example, polymers in composites, electrodes in devices, pharmaceuticals in drug delivery, body fluids and cells in bioimaging and biosensors, or analytes in chemical sensors. Our group focuses on developing a fundamental understanding of interfaces in nanoscale systems, which can have far-reaching implications to various fields of nanotechnology.…