Advanced Materials » Energy, Environment, and Sustainability

We develop fundamental knowledge and technologies to meet an increased demand for energy with minimal environmental impact. Examples of current focus areas include development of active and selective catalysts, advancing new strategies in membrane-based separations, and introduction of next-generation semiconductors for energy research.

Faculty

Photo of Won Tae Choi Won Tae Choi Assistant Professor
(352) 392-9102

My research group focuses on rational design and engineering of next generation electrochemical systems for human convenience, energy, environment, and sustainability. We seek to address key questions related to the electrochemical systems by leveraging electrochemistry, materials chemistry, and device engineering. Our interests include (1) synthesis of new materials for electrochemical devices, (2) combining electroanalytical chemistry (i.e.…

Photo of Helena Hagelin-Weaver Helena Hagelin-Weaver Associate Professor, and Dr. and Mrs. Frederick C. Edie Term Professor
(352) 392-6585

WE WORK ON HETEROGENEOUS CATALYST DEVELOPMENT in my laboratory and our ultimate goal is to obtain a fundamental understanding of these catalysts at the atomic level. Our approach is to synthesize well-defined heterogeneous catalysts using nanoparticle oxides with various shapes and sizes as supports and carefully control the deposition of active metal onto these supports using atomic layer deposition (ALD), or other more conventional catalyst synthesis methods, such as precipitation-deposition or incipient wetness impregnation.…

Photo of Peng Jiang Peng Jiang Professor
(352) 392-2189

WE ARE BROADLY INTERESTED IN DEVELOPING new chemical, physical, engineering, and biological applications related to self-assembled nanostructured materials. Our current research is focused on the following four topics:

SELF-ASSEMBLED PHOTONIC & PLASMONIC CRYSTALS Photonic crystals and plasmonic crystals offer unprecedented opportunities for the realization of all-optical integrated circuits and high-speed optical computation. Our group is developing a number of scalable colloidal self-assembly technologies to control, manipulate, and amplify light on the sub-wavelength scale.…

Photo of Joshua D. Moon Joshua Moon Assistant Professor
901-569-7522

Our group focuses on designing advanced polymer materials for clean energy, clean water, and environmental sustainability.  We combine modular polymer synthesis with experimental tools that probe both molecular-scale and macroscopic transport in polymers with the goal of informing predictive design of the next generation of materials for membrane-driven separations.

A few areas of interest to our group are:

Predicting gas separation membrane performance in realistic environments

Polymer membranes offer a competitive option for energy-efficient carbon capture and hydrocarbon purification; however, many promising materials developed in the lab fail to perform as well in the field. …

Photo of Mark Orazem Mark Orazem Distinguished Professor and Associate Chair for Graduate Studies
(352) 392-6207

ELECTROCHEMICAL ENGINEERING The research performed in this group represents applications of electrochemical engineering to systems of practical importance. In recent work, electrokinetic phenomena were exploited to enhance continuous separation of water from dilute suspensions of clay associated with phosphate mining operations. The technology developed in this project is intended to greatly reduce the environmental impact of mining operations.…

Photo of Janani Sampath Janani Sampath Assistant Professor

WE STUDY POLYMERS, PROTEINS, AND THEIR HYBRIDS TO DESIGN THE NEXT GENERATION OF SOFT MATERIALS using molecular dynamics simulations, high throughout computations, and enhanced sampling methods. To sustain materials discovery in the future given the limited resources at our disposal, predictive engineering techniques must be employed to allow for efficient design and optimization of materials.…

Photo of Kirk J. Ziegler Kirk Ziegler Charles A. Stokes Endowed Professor
(352) 392-3412

NEARLY ALL NANOMATERIAL APPLICATIONS REQUIRE an interface with other materials, including, for example, polymers in composites, electrodes in devices, pharmaceuticals in drug delivery, body fluids and cells in bioimaging and biosensors, or analytes in chemical sensors. Our group focuses on developing a fundamental understanding of interfaces in nanoscale systems, which can have far-reaching implications to various fields of nanotechnology.…